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Design is a decision-making process that depends on multiple attributes. Analysis of alter-
natives with respect to a single metric representing the “goodness” of the concept is difficult
without resorting to subjective weightings on an overall evaluation criterion. The use of sub-
jective factors in a decision-making process is often met with criticism, as the selection of
a design may be traced to preferential decisions made on a certain day by a single individual.
A methodology is needed that reduces the impact of uncertainty in the subjective weight-
ing factors while retaining the traceability, defensibility, and rigor provided by traditional
multiple attribute decision-making techniques. In this work, a standard process for sys-
tems engineering using the quality function deployment approach with a multiple attribute
decision-making technique for concept selection is supplemented through the use of paramet-
ric slide bars to play “what-if” games and a probabilistic environment that plays all possible
“what-if” games and summarizes the results. Using the modified process, families of concepts
can be rapidly examined based on varying levels of subjective preferences. Decision makers,
armed with a rapid parametric sensitivity analysis tool, can make more informed decisions
about future concepts, policies, and acquisition decisions. An interactive graphical environ-
ment can be used to visualize the diverse sets of trades and understand non-intuitive answers
by tracing customer needs to proposed solutions in real-time. In practice, the proposed pro-
cess facilitates iteration between needs and concepts and fosters and increased understanding
of the concept space between designer and decision maker.

Nomenclature
C Overall concept goodness
Cdo Zero-lift drag coefficient
Ki Kill switch value [0, 1]

I. Introduction
“Design is a decision making process, and the selection of design parameters represent decisions.”

– G. A. Hazelrigg [1]

DESIGN is an artful, scientific, and practical process for decision making in the presence of constraints. While
the laws of physics govern many trades in engineering design, subjective requirements that take the form of
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customer or designer preference constrain additional degrees of freedom and may contribute to increased risk or cost.
In the early stages of design, many of these degrees of freedom are constrained by the selection of an architecture,
concept, or platform which is essentially a “bundle” of decisions that defines the basis of further design efforts. The
selection of the “best” concept depends not only on the requirements levied on the design, but also the subjective
weighting of these requirements, defining the customer’s notion of “best.” A popular approach to evaluating design
alternatives is the establishment of an overall evaluation criterion (OEC) of the form:

OEC = W1
P

PMax
+ W2

P

PMax
+ W3

CMax

C
(1)

where P represent performance factors, C represent cost factors and W represent the subjective weighting factors that
define the customer’s preference of the “best” design‡ . In practice, the selection of a concept is highly dependant on the
identification of these subjective weighting factors that are difficult to define a priori. While subjective estimates from
the right experts are often on par with the quantitative estimates of the best physics-based models, the consequence of
selecting a suboptimal concept in the early stages of design can be disastrous to a project. A methodology for concept
selection that accounts for the subjectivity of the concept identification process and provides decision makers with
insight into the variability of identified concepts with respect to the subjective inputs is needed. This issue can be
addressed primarily through the use of parametric slide bars to enable rapid “what-if” trade studies and the use of
probabilistic techniques to examine distributions of input parameters. With these two modifications, the customer
can better understand the sensitivity to changing the subjective weighting factors, which not only characterize the
customer’s perception of value (which may be negotiable), but also represent the non-physical constraints levied on
the conceptual phase of design.

II. Tools and Methods for Concept Selection in Systems Engineering
The methods in this work originate from the intersection between systems engineering and conceptual design.

Systems engineering (SE) is “an interdisciplinary approach and means to enable the realization of successful systems”
[2]. Major functions of SE include defining customer needs, documenting requirements, and performing design
synthesis and system validation. Conceptual design is an early step in the design of new systems and products where
required functionality, derived from customer needs, is correlated to potential alternatives that can provide such
functionality. Numerous handbooks exist that define similar processes for concept selection in systems engineering
[3–6]. Several of the best practices in these guides are synthesized to demonstrate a dynamic, interactive process
for concept selection using an example of a liquid propellant missile target for the 2004 AIAA Graduate Strategic
Missile Design Competition. Subsequent sections introduce two key methods, quality function deployment (QFD)
for needs identification and multi-attribute decision making (MADM) for concept selection.

A. Quality Function Deployment (QFD)
The QFD technique is a systematic mathematical and social process used to translate the “Voice of the Customer”

into the “Voice of the Engineer.” Developed by Dr Yoji Akao and Dr. Shigeru Mizuno in the 1960s, QFD has found
widespread application in the development of products for the aerospace, automotive, electronics, and other industries
[7]. A primer on the QFD methodology can be found in the INCOSE Systems Engineering Handbook [8]. According
to the USAF Space and Missile Systems Center, “QFD is an excellent tool for both planning and requirements
flowdown” [4]. The primary matrix-based approach of the QFD technique, called the House of Quality (HoQ) for
its trademark appearance, uses a series of “rooms” to represent relationships. The data in each room are populated
through interaction with the customer. The interrelationship matrix, the center of the QFD, describes how customer
requirements in the left room impact engineering characteristics in the top room. Typically, symbols are used to
represent the numerical values of these interactions: 1 = weak, 3 = medium, and 9 = strong. The “roof” of the
QFD uses symbology to represent weak and strong positive correlations and weak and strong negative correlations

‡ While these weighting factors are occasionally formulated from empirical estimates of historical data, in practice the uncertainty
associated with the concept identification phase relies on subjective judgment for the determination of the weighting coefficient
values.
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respectively. Estimates of these relationships are traditionally achieved through a consensus-building elicitation
exercise between customers and engineers. In practice, the elicitation of these estimates from a group of experts is
not a trivial prospect. “Project Delphi” was the name given to anAir Force sponsored study by the RAND Corporation
on the use of expert opinion in decision making and long-range forecasting [9,10]. Today, many techniques including
chip voting [11], the Kano method [12], web-based elicitation methods, and electronic voting schemes are used to
gather data and reach consensus opinions for the purpose of executing mathematical decision support algorithms
[13].

The left room of the QFD lists customer requirements as either directly specified or derived from a Request for
Proposal (RFP) or other means. Engineering characteristic headings are defined by an Integrated Product Team. The
objective of the technique is to calculate the relative importance of each engineering characteristic with respect to
the subjective weightings for the importance of each customer requirement and the relationship mapping between the
two as defined by the interrelationship matrix. For example, the relative importance of an engineering characteristic,
j , is given as

(Engineering Characteristic)j =
n∑

i=1

(Customer Requirement)i(Interrelationship)ij (2)

Using Eq. (2), the importance of the engineering characteristics can be calculated and prioritized [14]. By cal-
culating the importance of the engineering characteristics, the QFD acts as a transfer function between customer
requirements and measurable engineering quantities that can be designed to. In a sense, QFD is a method for require-
ments decomposition to subsequent tiers or levels through a traceable and well-defined mathematical process based
on the quantification of these subjective relationships. An example QFD matrix for a Tunable Infrared Signature
Missile Target is shown in Fig. 1.

B. Multiple Attribute Decision-making (MADM) Techniques
Multiple Criteria Decision Making (MCDM) “refers to making decisions in the presence of multiple, usually

conflicting, criteria” [15]. MADM is a subset of this discipline focused on product selection. In the 1960s and 1970s,
the Department of Defense developed a variety of mathematical techniques for MADM that are summarized in [16].
These techniques can largely be considered more sophisticated approaches to developing an OEC like the one shown
in Eq. (1). The most widely used MADM technique used in the literature is the Analytical Hierarchy Process (AHP)
developed by Thomas L. Saaty in the 1970s [16]. Recognizing that decision making is a process based on applied
mathematics and human psychology, Saaty’s AHP decomposes a complex problem into a hierarchy of manageable
subproblems and distinguishes between alternatives through a series of pairwise comparisons that represent the
decision maker’s subjective preference across the criteria/solution space. While it has gained widespread popularity
through the use on multiple problems (many of which are summarized by Zahedi [17]), the arbitrary nature of the
user-defined hierarchy, the lack of underlying statistical theory, and mathematical anomalies in the technique (such
as “rank reversal”) have been the subject of much controversy in the management science community [18–22]. A
primary drawback in the use of the method for conceptual design is that consideration of a large number of factors with
a simultaneously large number of alternatives requires a cumbersome number of pairwise comparisons to evaluate
solutions. A related technique that addresses this concern is the Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) proposed by Hwang and Yoon in 1981 [15]. Of the suitable MADM techniques for concept
selection, TOPSIS balances the information required with the customer against algorithmic complexity. TOPSIS
technique examines proposed alternatives in multiple dimensions and formulates a theoretical “best-in-class” solution
across the multidimensional trade space. Mathematically, TOPSIS uses the concept of Euclidean distance to calculate
the distance from an “ideal positive” and “ideal negative” solution in multiple dimensions. These distances from these
ideals are defined as S+ and S− respectively and the overall goodness of a concept, j , is given by the variable, C, where

Cj = S−
j

S+
j + S−

j

(3)

Based on Eq. (3), maximum goodness is defined by a solution which is farthest from the negative ideal and closest
to the positive ideal. Though its use is not as widespread as AHP, TOPSIS has found a variety of applications in many
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fields. TOPSIS has been used by Benitez et al. to assess quality of service in the hotel industry [23]. Chu and Lin used
the technique for robot selection and implemented fuzzy logic to account for linguistic factors [25]. Braglia et al.
applied TOPSIS to failure mode, effects, and criticality analysis (FMECA) to prioritize failure modes associated
with commercial appliances [26]. Méndez et al. implemented TOPSIS as a means to identify preferred solutions in
a Multi-Objective Evolutionary Algorithm. The algorithm is used to develop a frontier of non-dominated solutions
for a nuclear power plant safety system [27].

The process outlined in this paper is generally independent of the MADM technique selected; however, TOPSIS
is used in the example application owing to its simplicity and traceability.

Fig. 1 House of Quality (HoQ) matrix for a tunable infrared signature missile target for the AIAA 2004 Graduate
Strategic Missile Design Competition [24].
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Fig. 2 A process for concept selection using systems engineering tools.

C. A Process for Concept Selection
Though systems engineering handbooks and texts review a number of methods for concept selection in a systems

engineering process, the Integrated Product and Process Development (IPPD) approach advocated by Schrage is
used as the baseline process in this work [28]. This process, which links QFD and MADM to promote requirements-
focused concept selection, is depicted in Fig. 2. First, the need for a new product is often explicitly stated through
the release of a RFP. The first step in the process shown in Fig. 2 is to mine the RFP and determine the customer
requirements in terms of short declarative sentences or phrases. The discipline of requirements analysis describes
many processes for such decomposition [29,30]. Simultaneously, to further define the problem, a literature search
is conducted to determine the engineering characteristics that are likely to be used to describe a product of the
intended type and to survey the state-of-the-art to identify potential concepts that will meet the customer need. When
existing concepts are lacking, the concept of the Interactive Reconfigurable Matrix of Alternatives (IRMA) proposed
by Engler et al. may be implemented to synthesize new concepts from their basic constituent elements [31]. In
practice, the conceptual synthesis and literature search phases must go hand-in-hand to identify the full range of
potential engineering characteristics that may be related to the customer requirements. It is also important to note
that measurable comparisons between concepts are best performed when these concepts can be measured against
similar engineering characteristics. For instance, in the example problem, the concepts are all types of missiles
and can be measured by the same physical parameters. Assessing aircraft, tanks, and missiles against each other
requires definition of measurable engineering metrics on reasonably consistent scales to avoid an ill-posed problem
for the MADM algorithm. Practical applications of this technique address this issue by comparing concepts on
the basis of higher-level parameters based on fundamental engineering quantities or the intended functions of the
product.
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Table 1 Example data matrix for the AIAA Graduate Missile Design competition (values [32]†)

Titan II Kosmos H-IIA Cyclone New Mod. of Atlas IIA
(USA) (Ukraine) (Japan) (Ukraine) Design Existing (USA)

AV configuration (Rating) 3 3 1 2 9 3 2
Type of fuel (Rating) 2 2 1 2 9 9 3
Ease of using fuel additives (Rating) 2 2 9 2 9 9 3
AV length (� Baseline, m) 0.8 34.0 24.0 47.0 40.0 40.0 14.4
AV diameter (� Baseline, m) 0.8 3.8 2.3 2.9 0.8 0.8 0.9
Engine configuration (Rating) 9 9 2 9 1 1 2
Thrust (k-lbs, � Baseline) 26 109 257 181 50 50 25.5
Use of GFE (Rating) 9 1 2 3 2 3 9
AV weight (k-lbs, � Baseline) 60 160 173 3 0 0 13.5
Specific impulse (s) 296 248 445 319.1 319 319 261
No. of propellant tanks 2 4 1 6 1 1 1
Ease of adding instrumentation (Rating) 3 3 3 3 9 2 3
Control system complexity (Rating) 9 9 9 9 1 3 1
Ease of adding active sensors (Rating) 3 3 3 3 9 2 3
Aerodynamics (estimated Cd0) 0.34 0.37 0.33 0.26 0.30 0.30 0.30

†The example problem used for this demonstration contains only information available in the public domain.

From the RFP review and the literature search, the basic shell of the QFD’s HoQ matrix can be constructed. IPT
meetings with the customer and interactive voting sessions are used to identify the importance of the RFP-derived
requirements and the interrelationships between the customer requirements and engineering characteristics. In prac-
tice, the latter can be extremely time consuming and is aided by efforts to consolidate the dimensionality of the HoQ
matrix. The QFD exercise produces a prioritized list of important engineering factors. These subjective values are
combined with descriptive data on the potential concepts in the data matrix. In practice, the rows of this matrix repre-
sent the engineering factors, the columns represent concepts, and the body contains information relating concepts to
the engineering factors. This matrix may contain a mix of qualitative and quantitative data. An example data matrix is
shown in Table 1. In the absence of quantitative data, a subjective scale can be used to represent relative contributions
in a given dimension, labeled as “rating” in Table 1. The TOPSIS algorithm takes the subjective weightings from the
QFD output and the data matrix to produce a set of numerical rankings for each alternative.

The process for linking QFD and MADM techniques has been implemented across the engineering community,
though it is often performed in two serialized steps as opposed to a single integrated process. For example, Liao et al.
linked QFD and MADM to identify packaging issues for notebook computers and provide feedback to engineers in an
effort to increase logistics efficiency [33,34]. Crowley et al. used this method to propose a low-cost solution to small
satellite space access and evaluated 11 concepts across 19 decision criteria [35]. Other applications include the design
of an Apollo-like spacecraft [36], subsonic transport aircraft [37], a civil tiltrotor [38], an ICBM-derived space launch
vehicle [39], and hypersonic air vehicles to name a few [40]. Ho provides a survey of AHP and its applications and
highlights 16 references where QFD and AHP are combined to produce an integrated decision-making environment
across the fields of higher education, manufacturing, logistics, and military force selection [41].

While the solid lines in Fig. 2 summarize the process in use today, the dashed lines in Fig. 2 represent a more
idealized iterative process where the customer is involved in an assessment of the alternatives and may choose to
revise requirements or alter their perception of important factors based on the result. Subsequent sections identify a
rapid, dynamic, and traceable way for not only mechanizing the process shown in Fig. 2 with a graphical analysis
tool, but also for accounting for the uncertainty in subjective requirements through the use of probabilistic methods.

D. Drawbacks to the Current Process
While the process shown in Fig. 2 can be used to identify concepts that satisfy the customer need, it has several

major drawbacks:
1. Although the tools provide a traceable process for concept identification, the setup time for the process is

considerable to perform a single design study.
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2. The selection of a concept is dependent on the subjective importance placed on the customer requirements
and the subjective relationships identified by the engineering IPT in the interrelationship matrix.

3. A committee approach is often used to specify the subjective weightings of the customer importance. Lengthy
discussions tend to result and the final values are often dominated by the most outspoken member of the
customer team.

Each of these challenges has the potential to cause dismissal of the study by the customer. For example, if
non-intuitive answers result or if the customer (or contractor) is unhappy with the final answer, any participant can
question the assumptions of the study. The second and third issues are closely related: as the answer depends on
subjective preference, participants dominated by the loudest member in the group tend to become disillusioned. The
effort expended for the lengthy discussion to arrive at the “unacceptable” answer tends to leave some members of
the IPT and customer team with a negative view of the process.

When a non-intuitive answer results, there are several possibilities: (1) the QFD or TOPSIS algorithms were
incorrectly calculated, (2) there is an error in the data matrix, (3) there is an error in the interrelationship matrix,
(4) the subjective weightings on the customer requirements are not correct, or (5) the non-intuitive answer is the
correct answer. The subsequent section proposes a modification to the methodology in Fig. 2 that addresses the three
drawbacks and postulates solutions to each of the five possibilities above.

III. Proposed Approach
To address the aforementioned shortcomings of the existing process, two key advances, parametrics and

probabilistics are proposed and discussed in the subsequent sections.

A. Enabling “What-if?” Trade Studies Using Parametric Slide Bars
The process defined in Fig. 2 is a serial mathematical process that is traditionally performed in distinct phases

with physical handoff of the data between steps. The first recommended modification to this process is the direct
integration of the TOPSIS MADM technique to the output results of the QFD. Incorporating both algorithms in
a single spreadsheet allows the overall goodness of a series of concepts to be evaluated in real time as customer
requirements are changed. To facilitate rapid trade studies, an interface called the Interactive Concept Evaluation
Environment (ICEE) was created in Microsoft Excel® to perform the calculations (Fig. 3) [24]. The QFD matrix
is imported as shown in Area 1 in Fig. 3. Using the Forms toolbar in Microsoft Excel®, graphical slide bars were
added to the interface and linked to the input cells to the customer importance rankings in the QFD (Area 2 in Fig. 3).
Moving the slide bars instantly updates the relative importance of the engineering characteristics (Area 3) as well as
the overall ranking of concepts from the TOPSIS calculations (Area 7). Several additional areas of the ICEE are used
to perform dynamic trades and assess the sensitivity of the overall ranking. Area 4 contains the data matrix for 15
concepts of interest. If there is an error in the data matrix, it can be corrected in real-time by changing the values in the
Excel® spreadsheet. Area 5 adds parametric slide bars for the risk-weighted customer importance. Using these slide
bars, a designer can scale the QFD rankings to perform trade studies directly on the engineering characteristics. While
this final approach overrides the QFD and tends to discount the voice of the customer, it is useful for performing
“what-if” studies to assess the sensitivity of concepts and identify the conditions under which certain alternatives are
more viable. This area of the tool is most useful to explain the rankings of individual alternatives by demonstrating
the mathematical traceability to customer requirements and is often helpful in explaining non-intuitive results.

The TOPSIS technique allows the relative importance of different factors to be taken into account; however,
what if a certain requirement is not just important, but is absolutely required? To address this issue, a series of “kill
switches,” Ki are used (Area 6 in Fig. 3). If an attribute value for a concept is within the minimum and maximum
ranges defined by the designer, Ki is equal to unity. Otherwise, the kill switch is set to zero. The overall goodness
criterion, Cj , is modified such that

C ′
j = Cj

n∑

i=1

Ki (4)

For n kill switches. In this manner, customer requirements can be set as important or absolutely required. Concepts
which do not meet the requirement thresholds will have an overall goodness of zero when the kill switches are
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Fig. 3 Interactive concept evaluation environment (ICEE) for a tunable infrared signature missile target for the
2004 AIAA Graduate Strategic Missile Design Competition [24].

activated and satisfactory concepts will be ranked according to the original algorithm. For example, the baseline
output ranking using the interactive TOPSIS (Area 7 in Fig. 3) is shown in Fig. 4.

When a threshold is placed on the dimension of availability by setting an upper bound and activating the associated
kill switch, the rankings change significantly as shown in Fig. 5. The “change” column indicates how the concepts
have been rearranged from the baseline case. Note that all concepts after position 7 have a score of 0 indicating that
the kill switch is active.

Finally, it is important to note that the traditional C value of the TOPSIS method has no physical meaning
and is merely relative to the C value for the other ranked concepts. To improve the readability of the results, it
is recommended that all C values be normalized by the C value for the top-ranked concept, yielding a relative
percentage where the best concept represents a perfect score of 100%. The final modified goodness equation, C ′′

j is
shown below where j is the index for each concept considered. C ′

j is given by Eq. (4).

C ′′
j

C ′
j

maxj (C ′)
(5)

In addition to the overall ranking, a designer may wish to identify why a given concept tends to win. The radargram
or spider chart is a useful graphical depiction of requirements satisfaction in multiple dimensions. The radargram
depicts the value of an attribute along weighted radial axes from the center of the chart: a better overall score
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is analogous to a larger area on the graph. The ICEE in Fig. 3 shows a radargram with respect to engineering
characteristics; however, using the QFD technique in conjunction with the TOPSIS algorithm, it is also possible to
depict the overall goodness in terms of top-level customer requirements as shown in Fig. 6. This depiction is called
the “requirements radar.”

In the above figure, the shaded area represents the value of each customer requirement as defined by the parametric
inputs to the interactive interface in Fig. 3. The outer solid line shows how well the concept New Design meets the
customer requirements. For comparison, the inner solid line shows how an underperforming concept differs from the
top choice. The numerical values of importance are scaled by the relative importance of each requirement so that no
concept can score outside the shaded region. Maximum satisfaction of customer requirements therefore occurs when
any solid line (representing a concept) entirely overlaps the shaded area (representing customer requirements). The
difference between the shaded area and solid line in any one dimension is the requirements gap in that dimension,
which provides information to designers on how individual concepts may be modified to better meet customer
requirements.

B. Accounting for Subjectivity from the Selection Processing Using Probabilistic Techniques
The parametric technique is a powerful tool for assessing the sensitivity of concepts to changing customer pref-

erence; however, what is ultimately desired is a technique that reduces the impact of uncertainty in the subjective
criteria. As previously mentioned, subjective estimates of customer preference gathered through consensus-building
elicitation methods are a useful and effective way of understanding customer needs; however, uncertainty and dis-
agreement in these values guides designers to suboptimal concepts and may lead to the development of a product
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that does not meet customer needs. While a designer can use the parametric slide bars to play a number of “what-if”
games, a key question arises: “Can we play all the games and track the results?”

Once the parametric environment has been created, a probabilistic wrapping utility can be used to execute a
Monte Carlo Simulation (MCS) on the customer importance values [42]. In place of the single data value driven by
a parametric slide bar, a distribution of importance from zero to nine can be defined. A uniform distribution, shown
in Fig. 7, acts as a random number generator and will select importance values uniformly between the specified
minimum and maximum. This distribution is most effective when there is no preference for a customer requirement

Fig. 7 Definition of a uniform distribution.
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Fig. 8 Definition of a triangular distribution.

or when no decision can be reached by consensus. The triangular distribution shown in Fig. 8 is most appropriate
when a likely value is generally agreed upon but there is some disagreement around a preferred point.

The triangular distribution will preferentially select random numbers closer to the likeliest value while including
values up to the extremes and is most appropriate for design activities where there is some group disagreement around
a median value. It is important to note that only anchored distributions are appropriate for this technique to avoid
calculation errors in ICEE framework. Due to the relatively simple nature of the calculations in the TOPSIS algorithm,
the MCS runs very quickly. Experiments were conducted using commercially available MCS tools including Crystal
Ball by Decisioneering, Inc. [43] and ProbWorks by Pi Blue Software, Inc. [44].

IV. Interpreting the Results
As the input values have transitioned from deterministic numbers to probability distributions, the output results

are also displayed in probabilistic terms. One method for viewing the output is in the form of a probability density
function (PDF) or histogram, as shown in Fig. 9. As opposed to the single numerical values representing each
concept’s ranking with respect to its peers as shown in Figs. 4 and 5, the histogram view shown in Fig. 9 visually
depicts the variability of the concept owing to uncertainties in subjective factors when probability distributions are
used. The median value of the histogram corresponds with the absolute numerical scales of Figs. 4 and 5. The extreme
values for a given concept indicate the best and worst possible scores for C′′ across the range of customer requirement
preferences as defined by the probabilistic inputs. When the histograms overlap, it is possible for the two concepts
to change order in the rankings (shaded areas in Fig. 9). For the example shown in Fig. 9, a uniform distribution
was run over all values of the customer requirements§ . The histogram shows the distribution of the resulting overall
goodness as the customer requirements are varied over all possible scenarios. The example in Fig. 9 shows that the
New Design tends to win under most circumstances, although Existing Design-New Engines and Titan II tend to
score well for a large range of scenarios. One of the shaded areas highlights the range of cases where the customer
requirements may be set such that the Titan II outperforms the New Design. It is also interesting to note that the
Kistler K1 concept is generally outperformed by all peer concepts except for a very small range of scenarios where
it can perform better than one or more alternatives. It is important to note that just because the Kistler K1 beats
the New Design for a vanishingly small number of situations, this does not necessarily mean that the Kistler K1
is the “best” solution because the same scenarios that penalized the performance of the New Design may also have
benefited other concepts.

Another way of interpreting the results to gain a measure of overall goodness using the probabilistic technique
is to track the highest rank attained by a concept and how many times this rank is attained. For each setting of
the importance on the customer requirements, the candidate concepts will be ranked according to the flowdown of

§ Only four of the candidate concepts are shown on the histogram for clarity. The remaining concepts feature median values that
fall between the Kistler K1 and the Titan II.
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mappings through the QFD. By tracking how many times each concept attains each rank, a designer can gain an
appreciation for the overall goodness of a concept with respect to its peers. For example, if a given concept is ranked
first regardless of customer preference then the concept may be considered robust to changing customer preference
in the presence of the identified peer concepts. This depiction of the overall results tends to follow the same trend
as the histograms shown in Fig. 9; however, the results are easier to interpret. It is important to note that the same
MCS that generates the histogram can be data mined in a different manner to obtain this information. The simplified
summary is shown in Table 2. When uniform distributions across all requirements are used, ten of the proposed
concepts can attain the first place rank, although many only do this a handful of times. From Table 2 and Fig. 9, it
can be determined that the New Design is the “ideal concept” with respect to overall score and varied requirements.
Using different distributions or activating kill switches would change this result.

Further examination of Table 2 shows that there are only five concepts worth considering when uniform distri-
butions are used on the customer preference: the sixth place concept, Titan II (Both Mod Engines) attains a first
place rank less than 1% of the time. These results represent a case where the customer has no preference to any
of the requirements, which is very unlikely. In practice, using different distributions or eliminating concepts from
consideration will change the results of Table 2 dramatically. Concepts are not considered in absolute terms, they
are considered relative to the other choices offered. Removing concepts from the selection pool or focusing the
probability distributions to a certain area of the requirements spectrum has a significant impact on the rankings of
each candidate concept.

Although uniform distributions were used to demonstrate the concept of probabilistic assessments, these distribu-
tions imply that the customer has no preference toward any of the requirements. In practice, triangular distributions
are more appropriate for showing the variation of customer preference around a median value. When triangular
distributions are used, the spread of the histograms in Fig. 9 decreases dramatically and the histograms tend to cross

62



BILTGEN AND MAVRIS

Table 2 High scores and frequency of occurrence for 15 missile concepts

Number of
Alternative Best rank times % of best

New design 1 1929 38.5%
Existing design: new engines 1 1155 23.1%
Titan II 1 933 18.6%
Titan II (one stage with modified engine) 1 445 8.9%
Atlas IIA 1 476 9.5%
Titan II (both stages with modified engines) 1 27 0.5%
H-IIA (Japan) 1 23 0.5%
Kosmos (Ukraine) 1 5 0.1%
Cyclone (Ukraine) 1 4 0.1%
Kosmos (modified engines) 1 2 0.0%
Rokot 1st Stage 2 1 0.0%
Dnepr 2 3 0.0%
Proton K 4 2 0.0%
Zenit (Ukraine) 5 1 0.0%
Kistler K1 5 1 0.0%

far less often. Similarly, the values in Table 2 tend to be more discriminated, with fewer alternatives attaining a
rank of 1.

The most general application of this technique is to apply probability distributions to the customer importance
values; however, it is also possible to assign a distribution to values in the data matrix to represent design uncertainty or
to any cell in the QFD interrelationship matrix to represent disagreements in the mapping of customer requirements to
engineering characteristics. A similar technique was demonstrated by Otto and Wood using probability distributions
on the values in a Pugh selection matrix [45]. On one hand, as more probability distributions are added the variance
of the overall rankings will increase making it more difficult to definitively select a single answer; however, if the
same concept wins regardless of how many distributions are used this concept is robust with respect to changing
requirements. A compromise process is to run two MCS: one with uniform distributions to see how concepts behave
across all possible “what-if” games and a second MCS with triangular distributions representing likely scenarios. The
outputs of this process are shown in Fig. 10 for the case of pure uniform distributions and in Fig. 11 with triangular
distributions on some input parameters.
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New design
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Fig. 10 Probabilistic rankings with uniform distributions on all inputs.
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Fig. 11 Probabilistic rankings with some triangular distributions.

The figures show the overall score of each concept with the error bars representing the relative amount of change
present when the probability distributions are used. The error bars are smaller in Fig. 11 owing to the more restrictive
triangular distributions. Also, some concepts have changed positions between the two cases. This is indicative of
the shift in the mean caused by the settings of the three parameters (minimum, most likely, and maximum) of the
triangular distributions that impact the type of “what-if” games played in the second case.

Occasionally, a non-intuitive answer results from applying a mathematical algorithm to the decision support
process. The rankings are often traceable back to the customer’s subjective preference on the requirements and
can thus be understood and the inconsistencies mitigated with the approach proposed in this paper. Sometimes, the
discrepancies are attributable to misrepresentation of the concept in the data matrix. For example, the New Design
scores well in all of the examples shown. This concept, designed specifically to meet the needs of this RFP, would
have performance precisely tuned to address customer needs; however, the data matrix used for this example does
not give an estimate of the technical risk associated with new product development, the long development times
or cost associated with such endeavors. Notional concepts or “paper airplanes” always tend to outperform known
systems when compared using qualitative methods because performance estimates tend to be overestimated and cost
estimates tend to be underestimated. Another common problem that results in non-intuitive solutions is the use of two
similar and reinforcing customer requirements. When scoring the interrelationship matrix, two similar requirements
may result in similarly scored rows, artificially inflating the score for one or more engineering characteristics. The
same phenomena can be observed in the relationship between engineering factors and the concept descriptions in
the data matrix. To support decision makers and avoid the overinflation phenomenon, engineers must be judicious in
their definition of requirements and responsible in the estimation of values for the data matrix. As with any decision
support process, users should verify the algorithm’s conclusions using sound judgment supported by modeling and
simulation to confirm performance estimates where possible. Finally, it is important to note that when non-intuitive
results are revealed as the “right” answer in the proposed tool, designers must use both the tool and underlying data
to build a case to present the solution to decision makers. The purpose of the proposed process is not necessarily
to dictate an answer, but to provide additional insight to decision makers by providing a traceable process that is
interactive and provides a measure of uncertainty quantification in regards to subjective preference factors.

V. Conclusion
Subjectivity plays a significant role in concept selection in the design process, and often customer preference

factors can have more influence on design decisions than physics-based or technology-driven attributes; however,
subjectivity does not imply “bad” decision making. In the case of revolutionary or unconventional approaches,
subjective estimates may be the only avenue for comparison when underlying phenomenological models do not
exist. The process outlined in this paper does not seek to eliminate the influence of subjective factors, merely to
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account for the variations endemic to these estimates with a measure of uncertainty in the final results. The proposed
modifications to the process for concept identification shown in Fig. 2 address the shortcomings in traditional
systems engineering by implementing a dynamic, parametric approach to concept selection and visualization and
a probabilistic approach to uncertainty quantification in customer requirements. Using modern software tools, it is
possible to assess the sensitivity of potential concepts to changing customer preference in real time using parametric
slide bars and off-the-shelf visualization tools. The agility that arises from automating the flow of information
from customer preferences to concept selection through a direct linkage of QFD and MADM techniques enables a
more customer-centric solution identification process where the impact of subjective decisions on the concept space
can instantly be reviewed and revised. Furthermore, leveraging probabilistic techniques for the establishment of
customer preference and the mapping of customer requirements to engineering characteristics can reduce the impact
of subjectivity on the design process and address the primary criticisms of qualitative systems engineering methods
and forecasting techniques. In cases where non-intuitive answers result, the traceable mathematical mappings from
customer needs to solutions and the ability to parametrically alter the inputs and observe a chance in rankings helps
increase the confidence in the identified answer. Often, non-intuitive answers may provide the greatest benefit in
a competitive situation by developing a new way to meet customer requirements that exceeds the benefits offered
by traditional approaches. On the other hand, these non-intuitive answers must also be treated with caution and
rigorously verified against the input data. In many cases, adding multiple “important” requirements that measure the
same phenomena or overestimating the performance of revolutionary concepts may result in a misjudgment of concept
performance with respect to known peers. It is important to note that the aforementioned process is best described
as a “decision support environment” rather than a “decision-making environment.” Implementation of parametric
tradeoff environment in a dynamic, graphical tradeoff environment provides decision makers with an interactive,
traceable, and justifiable means to validate concept selection decisions and understand sensitivities. The addition
of probability distributions in the same parametric environment help engineers and decision makers understand the
impact of uncertainty in their subjective decisions and account for the variability of concept performance in the
presence of uncertain customer requirements.
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